Differential Diagnostics for Lithium Ion Battery Cells Connected in Series

نویسندگان

  • Jariullah Safi
  • Joel Anstrom
  • Sean Brennan
  • Hosam K. Fathy
چکیده

This paper presents a new method for estimating the capacity of a lithium ion battery cell in the presence of a reference cell the parameters of which are well characterized in series with it. The method assumes that both cells are cycled using the same current trajectory starting from the same state of charge (e.g. fully charged). Voltage measurements for both cells as well as current measurements for the series string constitute the input to a nonlinear least squares minimization problem. The goal of this problem is to estimate the capacity of the cell given the difference between its voltage and that of the reference cell. We refer to this as the differential estimation problem, and use Monte Carlo simulation to compare it to the more traditional approach of estimating the capacity of each cell in a battery string independently using its current/voltage measurements. Two key conclusions emerge from this simulation. Compared to traditional estimation, differential estimation results in capacity estimates whose variance is (i) twice as sensitive to voltage measurement noise but (ii) significantly less sensitive to current measurement noise. This makes differential estimation more appealing for battery packs with high current measurement noise and low voltage measurement noise. ∗Address all correspondence to this author. NOMENCLATURE st The state of charge of a cell at time t s0 Initial state of charge Q(i) Charge capacity of the ith cell It True value of current at time t It = ∑t−1 k=1 Ik Ĩt Measured value of current at time t. Ĩt = It +wt wt ∼N (0,σ2 w) σw Standard deviation of current measurement noise wt Ĩt = ∑t−1 k=1 Ĩk R(i) Resistance of the ith cell. y t True voltage response of the ith cell at time t ỹ t Measured voltage of the ith cell at time t. ỹ (i) t = y (i) t + v (i) t v t ∼N (0,σ2 v ) g(s) The open circuit voltage map of the battery Q̂(2) Estimate for cell 2’s capacity ŷ t Predicted voltage for the ith cell at time t σQ2 Standard deviation of Q̂ (2)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Numerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle

Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Role of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles

With respect to the limitations of fossil energy resources, different types of electric vehicles (EVs) are developed as suitable alternatives. Lithium-ion (Li-ion) battery cells play an extremely important role in EVs due to their unique features. But they need a thermal management system (TMS) to maintain their surface temperature uniformity and avoid them from thermal runaways. In the current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014